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Abstract. In this paper four different Genetic Algorithms (GAs) are proposed 

to solve the QoS-aware Web Services Composition (QWSC) problem in six 

different search-space sizes and a realistic deadline (a point not covered in 

many related works). The results obtained are compared with some results 

from an Exhaustive Search (ES) algorithm that always guarantees the global 

optima. Differently from some related works, statistical techniques are 

adopted in this paper in order to ensure more precise results from the four 

GAs.  The results obtained showed that the design of experiments and the 

performance evaluation can be used to determine which genetic operators are 

better suited for the QWSC problem. 

 

1. Introduction 

 

Nowadays, QoS-aware Web Services Composition (QWSC) is one of the most 

interesting research issues on Service-Oriented Architecture (SOA). Actually, it is not a 

new research issue and a Genetic Algorithm (GA) was proposed to solve this problem in 

2005 by [Canfora et. al. 2005]. In that paper, an empirical study compared a GA with 

Integer Programming (IP) based algorithm. The results proved that the GA was better 

suited to the QWSC problem. Other works also compared IP-based algorithms with 

GAs concluding that a GA is a better alternative [Ko et. al. 2008]. Furthermore, recent 

works also used GAs or hybrid algorithms (GA combined with another technique) to 

solve this problem [Batouche et. al. 2010; Fanjiang et. al. 2010]. 

QWSC is a combinatorial NP-hard problem so it is a complex problem to solve. The 

number of possible composition plans (the size of the search-space) grows 

exponentially according to the size of the composite plan. Thus, the use of ES 

algorithms or numerical method algorithms is limited to only very small search-space 

sizes. When the growing proliferation of the use of Web Services (WS) is considered, 

these algorithms become more and more obsolete. 

Another important characteristic of the QWSC is the fact of it is a soft real-time 

problem. However, many papers found in the open literature do not explicit approach 

this characteristic. Only in some more recent papers this characteristic is mentioned 

[Fanjiang et. al. 2010; Liu et. al. 2010]. According to [Liu et. al. 2010], due to this fact it 



  

is necessary to obtain a solution within the established deadline , even if the solution 

found is only approximate to the optimal one. 

According to [Cheng 2002], a real-time system is one where time requirements of the 

system are related to external events (the environment). For this, it must be ensured that 

each request is answered before the deadline (a time constraint corresponding to the 

maximum time delay within a request must be completed). For a conventional (not real 

time) computer system be considered correct, it should provide a proper output to an 

input. For a real-time system, the correct output must be provided according to the 

existing deadline. 

E-commerce constitutes an important Internet application that is soft real-time and can 

benefit from the use of WS [Bravetti et. al. 2001]. This happens because in complex e-

commerce applications, different companies interact and, obviously, they could have 

different platforms and languages for their systems.  It is also important that e-

commerce applications guarantee QoS, avoiding that dissatisfied customers leave the 

site and do not come back, that would generate monetary losses [Menascé et. al. 2001]. 

Another important aspect of the QWSC problem is related to the number of concrete 

WS per abstract WS. In some related papers, this number it is not realistic and the 

experiments were conducted with a too small search-space size. In [Liu et. al. 2010] 

were available: two, three, two, five and eight concrete WS for each abstract WS in the 

WS composition flow. This is much different than the hundreds of concrete WS per 

abstract WS that can be found in real-world Universal Description Discovery and 

Integration (UDDI) repositories [Ko et. al. 2008]. In a small search-space size such as 

adopted in [Liu et. al. 2010], the global optima could be always found just using an ES 

algorithm. 

In this paper, it is defined five QoS attributes that are important to e-commerce 

applications: availability, cost, response time, reputation and confidentiality. 

Furthermore, four different GAs were developed to deal with the QWSC problem and 

some of the results were compared with an ES algorithm (that always finds the global 

optima). It was defined a deadline to the algorithms and six different search-space sizes. 

Also a well-planned performance evaluation experiment was realized, to analyze how it 

contributes to the optimization of GAs for the QWSC problem.  

This paper is organized as follows. In Section 2 the concepts related with WS and QoS 

are presented. Section 3 contains the concepts of Genetic Algorithms. In Section 4, the 

testing environment where the experiments were executed is described. The experiment 

design, which includes fixed and variable factors during experiments, is also presented 

in this section. In Section 5, the results are analyzed according to the response time and 

QoS obtained. Finally in Section 6, the conclusions are presented and possible future 

works are discussed. 

 

 

 

 



  

2. WEB SERVICES AND QOS 

 

According to [Alonso et. al. 2004] the definitions of WS range from very generic and 

all-inclusive to very specific and restrictive. Often, a WS is seen as an application 

accessible by other applications over the Web. This is a very open definition, under 

which just about anything that has an URL would be a WS. A more precise definition is 

provided by the World-Wide Web Consortium (W3C), which characterizes WS as: “A 

WS is a software system designed to support interoperable machine-to-machine 

interaction over a network. It has an interface described in a machine-processable 

format (specifically WSDL). Other systems interact with the Web service in a manner 

prescribed by its description using SOAP messages, typically conveyed using HTTP 

with an XML serialization in conjunction with other Web-related standards” [W3C 

2004].The second definition is adopted in this paper because is more detailed, placing 

the emphasis on the need for being compliant with Internet standards.  

According to [Wang et. al. 2010] the increasing popularity of employing WS for 

distributed systems contributes to the significance of service discovery.  However, 

duplicated and similar functional features existing among services require service 

consumers to include additional aspects to evaluate the services. How to select the best 

composite WS plan among available service (WS) candidates is an interesting practical 

issue. 

QoS could be referenced as a set of non-functional properties of WS, such as 

performance, reliability, availability and security. With the increasing number of WS 

with similar functionality, service quality measures are used to differentiate the existing 

services [Kalepu et. al. 2003]. Some of the QoS attributes found in the related works 

are: 

Availability: The quality availability is the probability that the service can be accessed 

and used. It means that this quality is obtained by the number of times the service 

answers a request divided by the number of total requests [Claro et. al., 2005]. 

Cost: the amount of money charged by the service provider in order to access the 

service. 

Response time:  it is the time spent between the time when the request is made and the 

time the client receives the response. 

Reputation: it is a measure of the client satisfaction by using the service. 

Confidentiality: determines that only the receiver and the sender must be able to 

understand the content of the transmitted message. 

Given that each WS has its own QoS attributes, to calculate the QoS of the composition 

plan as a whole, it is necessary to use aggregate functions [Ko et. al. 2008]. For 

example, the Table 1, adapted from [Ko et. al. 2008], shows an example of aggregation 

of these attributes: 

 

 

 



  

Table 1. QoS attributes. Adapted from [Ko et. al. 2008]. 

QoS attribute Aggregation function 

Availability ∏                      
      

Cost ∑              
      

Response time ∑                       
     

Reputation ∑                        
     

Confidentiality ∑                             
     

 

In Table 1 the QoS attributes of cost and response time composition are just the sum of 

individual values for each WS. The availability attribute is given by multiplying the 

values of each WS. Finally, the attributes of reputation and confidentiality represent an 

average value of each WS. 

These aggregate functions are used when the execution flow of the composition is 

sequential and, for different types of flows, there are others aggregate functions. But, 

according to [Luo et. al. 2011] any type of flow could be transformed into the one on 

sequence. Without loss of generality, it is assumed in this paper the sequential WS 

composition just as proposed by [Luo et. al. 2011]. 

The WS composition plan could be described as a sequence of tasks (abstract WS) with 

an initial and a final task. For any abstract WS, it could have some candidate services 

(concrete WS) with same or similar functionality but different QoS attributes.  Thus, 

there are various composition plans for each execution path of composite service. For 

example, if there are one execution path, with 10 abstract WS and 15 concrete WS per 

abstract, then the number of composition plans should be about  15
10

  [Zhang and Ma 

2009]. 

In [Fanjiang et. al. 2010] was mentioned that QWSC could be divided in two aspects: 

QoS-aware selection and orchestration creation. This paper is focused on QoS-aware 

selection and does not cover the use of Business Process Execution Language (BPEL) 

for the creation of the execution flow.  This division can be observed in Figure 1. 

 

 

Figure 1. Aspects of WS Composition. Adapted from [Fanjiang et. al. 2010]. 

 



  

3. GENETIC ALGORITHMS 

 

Genetic Algorithms (GAs) are stochastic optimization methods that work on the 

principle of evolution via natural selection, employing a population of individuals that 

undergo selection in the presence of variation-inducing operators such as mutation and 

crossover. A fitness function is used to evaluate individuals and reproductive success 

varies with fitness. The steps of a typical GA are as follows [Ai and Tang 2011]: 

 

1. Create an initial population; 

2. Generate new offspring by applying genetic operators, namely selection, 

crossover and mutation, one after the other; 

3. Evaluate the fitness value of each individual in the population; 

4. The process is finished if a desired solution was found or the execution time 

was expired. Otherwise, the process repeats steps 2 and 3. 

 

In this paper it is adopted the same genetic encoding scheme of [Tang and Ai 2010],  so, 

an individual in the population represents a WS selection plan and it is encoded in an 

array of n integers X1,X2…,Xn, where n is the total number of abstract WS in the 

workflow of the composite WS. In the genetic encoding scheme, each gene represents 

an abstract WS in the composite WS and a value of the gene represents a concrete WS 

of the abstract WS.  

 

4. PERFORMANCE EVALUATION OF GENETIC ALGORITHMS 

 

4.1.  Environment Configuration 

The main goal of this study is to evaluate different genetic operators to determine which 

combination is better to solve the QWSC problem. Thus, the test environment is 

composed of three machines: one representing a client, another a service provider and a 

third one executes a MySQL server with the data about the QoS attributes of the Web 

services. In the considered environment, the three machines are in the same network and 

are linked by a gigabit network switch. Figure 2 illustrates the environment test, were 

the machines used are heterogeneous and their configuration is presented in Table 2. 

Some tools used for developing the testing environment are: 

• Apache Tomcat: Web container used for deploying the WS of the service provider. 

• MySQL server: used to store data about the QoS attributes of the WS. 

• Apache Axis2: is a WS / SOAP / WSDL engine, used to host the WS responsible for 

fulfilling the requests of the client. The WS receives the request and then executes the 

proper GA to each request and sends the response to the client. 

 



  

 

Table 2. Hardware information of the testing environment. 

Machine CPU Clock Cache RAM 

Service provider Intel (R) Core (TM) 2 Quad 2.66 GHz 3 MB 8 GB 

MySQL server Intel (R) Core (TM) i3 3.10 GHz 3 MB 4 GB 

Client Intel (R) Core (TM) 2 Quad 2.4 GHz 4 MB 4 GB 

 

The experiments were performed using the default configuration of all tools used. The 

interaction among the machines is as follows: the client requests a WS composition plan 

to the service provider, the service provider search the MySQL server to get data about 

the QoS attributes of the WS and then executes one of the GAs and responds to the 

client witch was the WS composition plan selected and their Normalized Composition 

Aggregated QoS (NCAQ). 

 

 

Figure 2. The testing environment. 

 

All experiments have a time that represents the exchange of messages between the three 

machines in the test environment and the time required to normalize the QoS attributes 

obtained from the machine running the MySQL server. This time was recorded in ten 

repetitions and was calculated the average, standard-deviation and confidence interval 

(with confidence level of 95%). This can be seen in Table 3. This time is already 

considered in all experiments, so the average response time of the experiments showed 

in Figure 3 includes it and the time expended to run the GA. 

 

Table 3. The environment time in milliseconds. 

Average Standard-deviation Confidence Interval 

209 7 5 

 



  

4.2. Experiment Design 

The experiments were conducted varying three factors (algorithm, number of abstract 

WS and number of concrete WS per abstract WS) in order to verify the influence of the 

GA operators in the NCAQ of the obtained WS composition plan. The different 

combinations of the GA operators can be observed in Table 4. The parameterization of 

these factors can be observed in Table 5. 

 

Table 4. Different GAs evaluated. 

Name Selection Operator Elitism 

GA 1 Roulette wheel  Deactivated 

GA 2 Tournament with 16 players Activated 

GA 3 Roulette wheel Activated 

GA 4 Tournament with 16 players Deactivated 

 

Table 5. Experiments parameterization. 

Algorithm GA 1, GA 2, GA 3 and GA 4 

Number of abstract WS 4, 6 and 12 

Number of concrete WS per abstract WS 100 and 200 

 

Another key point to be analyzed in the experiment design is the definition of fixed 

parameters that should be considered in the application parameterization. These factors 

were: number of generations – 5; deadline – 1,500 ms; mutation operator – deactivated 

and crossover operator – one-point crossover.  

Thus, for each experiment, the client starts a request for the service provider, sending 

the parameters which search-space to search, i.e. the search-space of the composition 

flow that has four abstract WS and one hundred concrete WS per abstract; and which 

GA to use through a Java client program that calls the WS in the service provider 

responsible for running the selected GA algorithm and gets the data about QoS in the 

MySQL server. The MySQL table contains the QoS data about the WS, only 10% of the 

data stored is about the concrete WS that the algorithms should examine; i.e., in the “4 – 

100” search-space mentioned above, there is a total of four thousands concrete WS QoS 

data. In fact, there are many different ways to store the QoS data and some approaches 

uses semantic web and other technologies such as web ontology. In the work considered 

in this paper, it is not considered the impact that different approaches could cause in the 

final response time, although this time could be relevant under certain circumstances. 

The WS in the service provider, after getting the QoS data, normalizes it using the 

formulas presented in [Su et. al. 2007]. The WS also starts the selected GA and then 

sends this normalized QoS data to the GA. After running five generations, the GA 

selects the best chromosome and sends this information to the WS that responds to the 

client with the WS composition plan selected (obtained from the chromosome) and the 

NCAQ of the composition (fitness of the chromosome). For each experiment, this 

process was repeated thirty times and the average response time, the average NCAQ 



  

obtained, the standard-deviation and a confidence interval with 95% of confidence 

degree, based on t-Student table values, are all calculated.  All this was done to give a 

higher reliability for the result analysis. 

Six groups of experiments, representing the six search-space sizes evaluated were 

defined and can be seen in Table 6. The population size of all experiments also was 

defined, in a way that they accomplish the fixed parameters, as shown in Table 7. 

 

Table 6. Groups of experiments. 

# Abstract WS Concrete WS Algorithm 

1 4 100 GA 1, GA 2, GA 3, GA 4 and ES. 

2 6 100 GA 1, GA 2, GA 3, GA 4 and ES. 

3 12 100 GA 1, GA 2, GA 3 and GA 4. 

4 4 200 GA 1, GA 2, GA 3, GA 4 and ES. 

5 6 200 GA 1, GA 2, GA 3 and GA 4. 

6 12 200 GA 1, GA 2, GA 3 and GA 4. 

 

Table 7. Population of all experiments. 

Abstract WS Concrete WS 
Population (thousands) 

GA 1 GA 2 GA 3 GA 4 

4 100 2.6 35 2.5 40 

4 200 2.6 35 2.5 40 

6 100 2.6 35 2.5 40 

6 200 2.6 35 2.5 40 

12 100 2.6 32 2.5 35 

12 200 2.6 32 2.5 35 

 

Table 1 presents the aggregate functions of QoS attributes considered in this article. 

However, it is also need a way to assess the QoS of the composition as a whole, taking 

into account the QoS attributes defined. In [Canfora et. al., 2005] was presented a 

function that achieves this goal, it can be seen in Equation 3. Equation 4 shows the 

function to be optimized in the experiments in this article. It has no weights as Equation 

3, as defined in this article that all QoS attributes have the same weight. Given that the 

QoS attributes were normalized in a way that 0 is the worst result and 1 is the best result 

possible, simply add up all the attributes of QoS, no matter whether they should be 

minimized or maximized. 

 

Equation 3. Function to be optimized in [Canfora et. al., 2005]. 

      
                             

                       

 



  

 

Equation 4. Function to be maximized in all experiments. 

                                                            

 

Table 8. Example of Calculating the Normalized Composition Aggregated QoS (NCAQ). 

Name Cost Resptime Availability Reputation Confidentiality 

WSc1 1 1 1 1 1 

WSc2 1 1 1 1 1 

WSc3 1 1 1 1 1 

WSc4 1 1 1 1 1 

Aggregated 

QoS 

4 4 1 1 1 

Composition 

Aggregated 

QoS 

(4 + 4 + 1 + 1 + 1) = 11 

Normalized 

Composition 

Aggregated 

QoS 

11 / 11 = 1 

First, for each QoS attribute, the aggregated QoS is calculated using the formulas 

presented in Table 1. Thereafter, the composition  aggregated QoS is computed using 

the formula shown in Equation 4. Finally, this number is normalized between 0 and 1 

and called Normalized Composition Aggregated QoS (NCAQ). This is the attribute 

cited in Figure 4. 

 

5.  RESULTS ANALYSIS 

In this section, the response times of the five algorithms and NCAQ obtained are 

analyzed. These two metrics were compared and the influence of factors was calculated 

for the four GAs. In Figure 4, the horizontal axis represents the six different search-

space sizes evaluated, i.e. 4 -100  means a composition with four abstract WS and one 

hundred concrete WS per abstract. The vertical axis represents the average NCAQ 

obtained; normalized between 0 and 1 (the higher is the better). The algorithm called 

Exhaustive Search (ES) always guarantees the global optima. 

 

5.1 Time analysis 

A deadline of 1,500 milliseconds was defined for the algorithms. This deadline is 

realistic because, as showed in Section 1, e-commerce applications are soft real-

time systems and the users will not accept long delays in order to conclude their 

purchases. 

The ES algorithm does not attend this deadline in any of the six search-spaces 

evaluated, but it was evaluated in some cases to see how long it takes and also to 



  

found the global optima. Figure 3 shows the response times of the experiments. 

The vertical axis represents the average response time in milliseconds (30 

repetitions) and the horizontal axis represents the six different search-spaces sizes 

evaluated. There is also the confidence interval (with 95% of confidence degree) in 

the lines inside the columns. For any search-space size, the four GAs has their 

confidence interval overlapped which means that they are statistically equal. 

The ES algorithm was tested in the experiment groups one, two and four. In 

experiment group one it gets really close to the established deadline, with an 

average response time of 1,768 milliseconds. In experiment two it takes about forty 

hours, clearly unacceptable for an e-commerce application. In experiment group 

four takes about 171 seconds, another unacceptable response time for the 

experiments. With these results, the conclusion is that even for small search-space 

sizes, an ES algorithm does not comprise a good choice. 

The four GAs have the same statistical average response time and follow the 1,500 

milliseconds established deadline. This is an important point because if they had 

different response times, it could benefit the slower one with a better NCAQ 

obtained. 

 

5.2 QoS analysis 

Figure 4 shows the average NCAQ obtained by the five algorithms analyzed. In 

experiment group one, the GA 2 is clearly better than the other three GAs, with the 

average NCAQ of 0.783. The GA 4 is the one that is closest to GA 2, but the confidence 

intervals of both are not overlapped and so the GA 2 is statistically superior. The 

difference between the average NCAQ of GA 2 and ES is 0.018 indicating that GA 2 is 

near to the global optima. GA 1 and GA 3 are statistically equals because their 

confidence intervals are overlapped and both are worse than GA 2 and GA 4. 

In experiment group two both GA 2 and GA 4 are statistically equals, because their 

confidence interval are overlapped. In the same way that experiment group one, GA 2 

and GA 4 are better than GA 1 and GA 3. Again, GA 1 and GA 3 are statistically 

equals. In these experiments, the difference between GA 2 and ES was more significant 

with 0.06. 

The experiment group three shows that GA 2 and GA 4 are statistically equals. GA 1 

and GA 3 are also statistically equals. It was not possible to execute the ES to found the 

global optima because it would probably take thousands of years.  

For the experiment group four, GA 2 is better than GA 4 because their confidence 

intervals are not overlapped. GA 1 and GA 3 are statistically equals. The difference 

between the ES and GA 2 was 0.05. 

Experiment group five shows that GA 2 and GA 4 are statistically equals. GA 1 and GA 

3 are also statistically equals. The ES was not tested in this group of experiments 

because it would probably take too long. 

In experiment group six, GA 2 and GA 4 are statistically equals. GA 3 was a little better 

than GA 1. The ES was not tested in this group of experiments too. 



  

Considering the six groups of experiments the GA 2 was better in two search-space 

sizes (4-100 and 4-200) and statistically equal to the GA 4 in the others four search-

space sizes. This is already enough to point the GA 2 as the better one. But, another 

desirable characteristic of the GAs is the stability of their results. In fact, the results in 

Figure 4 shows that in all experiments GA 2 has a smaller confidence interval 

(excluding the ES for sure) indicating that is also the most stable of the four GAs. 

 

5.3 Influence of Factors 

The influence of factors was also calculated: selection operator and elitism operator. 

This was calculated only for the four GAs and it is related to the average NCAQ 

obtained. The results can be seen in Table 9. In all six groups of experiments the higher 

influence was from the selection operator, pointing the tournament with sixteen players 

much better than the roulette wheel. The elitism operator has much less influence, 

probably because it increases the time needed to execute the algorithm. As the deadline 

is fixed, in counterparty was necessary to decrease the population size. This decrease in 

the population size probably decreased the benefit of the elitism operator. 

 

Table 9. Influence of factors. 

Influence of Factors (%) 

# A – Selector Operator B – Elitism AB Total 

1 97.149 2.844 0.007 100 

2 99.856 0.140 0.004 100 

3 99.814 0.003 0.183 100 

4 96.205 2.252 1.542 100 

5 99.952 0.043 0.005 100 

6 98.035 0.588 1.377 100 

 

 



  

 

Figure 3. The average response time of the four GA algorithms. 

 

 

Figure 4. The average NCAQ of all five algorithms. 

 

6.  Conclusions and Future Works 

In this paper five different algorithms were presented and evaluated: an exhaustive 

search (ES) and four different GAs. Such algorithms were evaluated considering the 

response time, the accomplishment of the established deadline and the NCAQ obtained. 

A testing environment was configured to enable the implementation of the experiments. 

As mentioned in Section 1, the deadline is important because e-commerce applications 

are soft real-time systems and it is necessary to find good solutions within the 

established deadline.   

Another interesting result shows that is possible to use the design of experiments and 

performance evaluation to improve GAs focused on QWSC. In the experiments 



  

considered in this paper, the selector operator and the elitism operator were evaluated. 

Therefore, future works can consider a more complete performance evaluation 

including more GA operators, such as: crossover operator, mutation operator, mutation 

rate, crossover rate and so on. 

Furthermore, different deadlines can be established and by doing that, it is possible to 

discover that for a given deadline parameter one GA is better. For other ones, an ES 

algorithm or a heuristic algorithm could also be better. Thus, it is also possible to 

improve the GAs and create different hybrid algorithms and use the design of 

experiments and performance evaluation to evaluate them. 

In future works is planned to analyze the influence of factors: number of abstract WS in 

the composition flow and number of concrete WS per abstract. By doing that, could be 

possible to determine which algorithm is the best one for each search-space size; i.e. for 

a “2 – 100” search-space size the ES algorithm is probably the better choice, because 

guarantees the global optima and comprise the deadline; for a “4 – 100” search-space 

size GA 2 is the better choice.  Combining the information of the influence of the 

deadline and the influence of the search-space size, it could be possible to dynamically 

determine which algorithm is the best (or at least, a good choice) for each requisition to 

a WS Composition Engine, that will execute the appropriate QWSC algorithm. 

It is also planned in the next steps to use the design of experiments and performance 

evaluation to develop new hybrid algorithms that probably should have a better 

performance than some of the GAs present in the related works found in the literature. 
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